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Seventh Semiannual Status  Report 

June 30, 1969 

NASA Research Grant NGR 22-009-135 /k&zE- 
Response of Building Structures t o  Environmental Noise 

of Seismic, Acoustic and Aerodynamic Origin 

During the past  s i x  months w e  have accomplished a good deal under 
Two technical  papers have been completed and a t h i r d  is  t h i s  project.  

well  on the way. 
O u r  experimental f a c i l i t y  is now complete and a f a i r l y  steady f l o w  of 
experimental r e s u l t s  i s  now pouring out. 

One doctor's t hes i s  has reached t h e  rough draft stage. 

The report  DSR 76205-2 e n t i t l e d  "Vibration of a Continuum Excited 
by Random Motions of a Continuous Foundation" by S. H. Crandall and 
P, J. Remington (copy attached) w a s  issued on May 15,  1969. 
material  i n  t h i s  report  w a s  presented by Professor Crandall at the  
Romanian National Conference on Applied Mechanics i n  Bucharest, June 
23-27 and w a s  submitted f o r  publication i n  the Romanian Journal of 
Applied Mechanics. No t r a v e l  expenses were charged t o  the  project.  

The 

The paper "On the Use of Slowness Diagrams t o  Represent Wave 
Reflections" by S. H. Crandall (abstract  attached) w a s  completed and 
i s  t o  be submitted f o r  publication i n  the Journal of t h e  Acoustical 
Society of America. 
space is  a by-product of our work on waves i n  s t ructures  coupled t o  
half-spaces, 

T h i s  paper on the nature of waves i n  a half- 

M r .  Remington's t hes i s  "Response of a P la te  t o  Noise i n  a Support- 
ing Viscoelastic Medium" has reached the  rough draft stage and it is  
expected t h a t  he w i l l  complete h i s  degree requirements i n  the summer 
term. 
Acoustical Society of America t o  be held i n  San Diego, November 4-7, 
1969. 
t o  Noise i n  a Supporting Elas t ic  Medium" (see copy attached) w i l l  
subsequently appear i n  the  Journal of the Acoustical Society. 

H e  plans t o  present h i s  r e su l t s  at the  78th Meeting of the  

The Abstract of h i s  presentation e n t i t l e d  "Response of a Plate  

Mr. Kurzweil has successfully measured the  e n t i r e  matrix of 
impedance coeff ic ients  of the s o i l  surface of our model s o i l  f ac i l i t y .  
This matrix r e l a t e s  horizontal  and v e r t i c a l  force components and 
rocking moment components applied t o  a hypothetical r i g i d  massless 
disk i n  contact wi th  t he  surface t o  the  t r ans l a t iona l  and rocking 
ve loc i t ies  of the disk. The impedance coeff ic ients  were derived from 
measurements on three disks (with m a s s )  of d i f fe r ing  s izes .  
frequency range observed (100 - 1000 Hz. ) there  w a s  s m a l l ,  but 
measurable, coupling between horizontal  t rans la t ion  and rocking. 

I n  the 

I 
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M r .  Kurzweil i s  now using t h i s  data t o  predict  t h e  response of a column- 
footing combination. 
measurements. 

These predictions w i l l  then be compared w i t h  d i r ec t  
~ 

M r .  Nigam, a f t e r  making a survey of pile-foundation s t ruc tures ,  
de.cided to-concentrate h i s  e f f o r t s  on t h e  problem of noise t r ans fe r  
between the  s o i l  and p a r t i a l l y  embedded foundation s t ruc tures  repre- 
sentat ive.of  ac tua l  f l oa t ing  foundations. K i s - thes i s  proposal (copy 
attached) w a s  accepted May 29, 1969. 

_ _  

Professor Crandall i s  completing the  task of ed i t ing  the  report  
"Dynamic Properties of Modelling Clay" which describes our measurements 
of the  basic  dynamic propert ies  of Plast ic ine.  . -  
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VIBRATION OF A CONTINUUM EXCITED BY 

RANDOM MOTIONS OF A CONTI~OUS FOUNDATION 

Stephen H. Crandall 
and Paul J. Rmington 

Department of Mechanical Engineering 
Massachusetts Institute of Technology 

ABSTRACT 

Prior to ?lacing a dynamic continurn in ccntect with a 
vibrating foundation the djsplacements of the interfacial plane of 
the foundation constitute a random process in space and time whose 
characteristics are given. It is desired to predict the charac- 
teristics of the interfacial displacement process which occurs after 
the continuum is placed in contact with the foundation. Tkis repre- 
sents an idealization of the problem of predicting the ground-excited 
motions of a structure from measurements of ground motion prior to 
the erection of the structure. A generalized analysis of the problem 
is presented for the case where the underlying excitation is stationary 
in time. This is then specialized to the case where the motions at the 
interface are spatially homogeneous. The general nature of the problem 
is exhibited in a simplified manner by studying the case of a membrane 
stretched over a vibrating viscoelastic Winkler foundation. Extensions 
to plates on elastic and viscoelastic half-spaces are discussed. 



1. Introduction 

This paper treats an idea l iza t ion  of the general problem of 

predicting randorm vibrat ion leve ls  i n  a structure from measurements 

of the  exis t ing noise f ield at the  proposed s i te  of t h e  s t ructure .  

Because of the dynamic in te rac t ion  between the  s t ruc ture  and the 

foundation the  noise f i e l d  at the in te r face  can be altered considerably 

by the  presence of t he  s t ructure .  

l i nea r  continuous s t ruc tures  and l i n e a r  continuous foundations w i t h  

plane i n t e r f a c i a l  surfaces. 

at  the surface of t h e  i n t e r f a c i a l  plane before and a f t e r  the continuous 

s t ructure  is  placed i n  contact w i t h  t h e  foundation. 

continuous s t ruc ture  i s  called simply t h e  continuum. 

The discussion here is limited t o  

We focus our a t ten t ion  on the  random motions 

In  the  sequel the  

2, Description of t he  in te r face  motion 

Let the foundation occupy the  half-space z 

d the  proposed continuum be a simply 

0 and Let the in te r -  

face between the foundation 

connected region A i n  the xy plane, 

or igin t o  the point (x, y,  0 )  be denoted by 3, 

ment of the surface a t  t h i s  point at time t w i l l  have three  components 

ca, v and w o  Fo simplicity of exposition w e  confi 

those cases where tangent ia l  i ~ ~ e ~ f ~ c i ~ l  s l i p  is  p 

normal displacement w ( t )  is ef fec t ive  i n  the dyn i c  interact ion.  The 

formal extemsion t o  cases w i t h  bounded interfaces  where u ( r ,  t )  and 

v($, t) must be included i s  not d i f f i c u l t .  

Let the  posi t ion vector from the  

In  general the displace- 

-+ 

We take w($, t) ,  the  no a1 displacement of the in te r face  i n  the 

direct ion of pos i t ive  z, t o  be a random process i n  space and t i m e ,  The 

mechanisms responsible for t h i s  motion may be microseismic disturbances, 
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road and r a i l  vehicle noise, machinery vibrat ions or other urban noises. 

W e  assume that the  exc i ta t ion  can be taken t o  be s t a t i s t i c a l l y  s ta t ionary 

and t h a t  measurements of w ( r ,  t )  can be made p r io r  t o  the  erection of 

the  proposed continuum. 

all times and at all locations,  is zero; i * e * ,  E [ w ( r ,  t ) ]  = 0. We then 

focus our a t ten t ion  on the space-time correlat ion of w which provides 

su f f i c i en t  s t a t i s t i c a l  information f o r  almost a l l  p rac t i ca l  purposes 

independently of the  nature of the  process. 

t h a t  the process is  Gaussian then the space-time correlat ion provides 

a complete description of t he  process. 

+ 

W e  suppose t h a t  t he  ensemble average of w, at 
-+ 

If it can a l so  be assumed 

The space-time correlat ion function 

+ +  
is  a function of rl, r2 and T but,  because of the 

+ T I 1  (1) 

s t a t iona r i ty ,  it i s  

independent of t. 

spec t r a l  density C ( r 7 ,  r-, w )  which is a Fourier transform of (1) 

It i s  often more convenient t o  deal w i t h  the cross- 
+ +  
I L  

In  general  the  

contact region 

in te r face  motion i s  not spa t i a l ly  homogeneous. If the 

A extends t o  i n f i n i t y  i n  a l l  directions it may happen 
+ + 

that (1) and (2)  do not depend on r1 and r2 i-ndently but only on 

their  relative displacement r2 - rl = 
-+ -+ + 

A. In  t h i s  case the random process 
+ 

w ( r ,  t )  is  said t o  be homogeneous i n  space and, i n  place of (1) and ( 2 )  r' 

we  w r i t e  

R ( b ,  T) = E[w(G, t )  + b, t + T I 1  

-3- 



Here a fur ther  a l te rna t ive  description is  obtained by performing a 

Fourier transformation with respect t o  the displacement x. 
the vector wavenumber variable & w e  define the  wavenumber-frequency 

spectrum +G, W )  as follows. 

Introducing 
-+ 

+ 
where the  integrat ion extends over the  en t i r e  A-plane. 

t ha t  the  wavenumber dependance of $(k9 w )  is  a function only of the  

If it happens 
-?- 

magnitude k of the wavenmbe 

direct ion)  then the randam process w ( r ,  t )  i s  said t c  be i sc t ropic  as 

( i * e *  is  independent of the vector 
-+ 

well as homogeneous and i ts  second order s t a t i s t i c a l  properties 

defined by @(k9 w )  a 

+ 
a1 of the  waven~ber-freq.uenc~ spectrum $(k9 w) over 

the en t i r e  w a v e n ~ ~ e r  plane and over a l l  frequencies gives the mean square 

of the  process w ( r ,  t), 
-). 

It is often co enient t o  work with the  function 

of frequency which remains after integyation over w 

-?- 
the  

In  Eq, (5)  dB represents the  

the in t eg ra l  extends over the e n t i r e  wavenumber plane. 

of the s t a t i o  apy homogeneous r dom process w(r, t 

ea i n  the  wavenumber plane and 
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3. Interaction of foundation and continuum ---- 
-b 

Let w (r, t) denote the interface displacement of the foundation 
0 

prior to the installation of the continuum and let the corresponding 

statistical descriptions be designated by Ro9 Co, $o and So. 

continuum has been installed an interaction pressure p(r9 t) will develop 

After the 
-b 

between the foundation and the continuum in order to maintain the same 

displacement w(r, t) in the foundation and in the continuum at all points 
-b 

of the contact region A. 

that of predicting the statistical properties of w(r, t) given the 

corresponding properties of w (r , t 1. 

p($, t) to be entirely dynamic arising only as a reaction to the existing 

The problem we are concerned with is essentially 
-+ 

-+ 
We consider the interaction pressure 

0 

seismic excitation. Because of the assumed linearity the reaction to 

any nondynamic loading such as gravity could be superposed on our solution. 

In order to describe the dynamic propertjes gf the frxndation in 
-f -P 

a forma way we introduce the Green's function gf(r, t; r', t' > which 
=+ 

denotes the foundation displacement at the position r and time t due to 
?os ir!w a unit impulse of force in the z-direction applied (to the 

quiescent foundation ) 

tion the displacement 

-+ 
d r ,  t) 

at the position ;' and time t' . Then by superposi- 
of the foundation after the continuum is in place is 

Similarly, if gc(r', t ; r" , t ' denotes the displacement of the continuum 

alone at the position r' and time t due to a unit impulse of force in the 
positive z-direction applied at the position r' and t i m e  t', the displace- 

-b 

ment of the continuum when it is in place on top of the vibrating founda- 

tion is 
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Equations ( 6 )  and (7) are simultaneous linear integral equations for the 

resulting interface displacement w(r, t ) and pressure p(s, t) . 
particular cases, as we shall see, it is possible to solve these equations 

to obtain explicit expressions for  w(r, t 1 in terms of linear operations 

on w (r , t 1. 

equivalent to the statement that the response displacement w(s9 t) is 

related to the entire past history of the excitation wo over the complete 

interface A by some linear functional; e.g., 

+ In 

-t 

+ 
More generally we can say that Eqs . (6) and (7)  are 0 

Then proceeding formally 

1 

and by interchanging the order of ensemble averaging with evaluating the 

linear functional we have 

a1 indication of h the space-time correlation of the response 
3 3 

w(r, t> depends on the space-time correlation of the excitation wo(r, t), 

-6- 



A more explicit representation can be obtained in case w and 
0 

w are both spatially homogeneous. 

and the continuum have uniform dynamic properties (independent of the 

position r) and that the interfacial region A be unbounded. 

the space-time Fourier transform for the displacement w(r, t) 

This requires that both the foundation 

3 
We introduce 

3 

where the space integral is over the entire plane. The Fourier transforms 

When the 

time the 

t and we 

3 3 3 
and P(k, w )  for wo(r, t) and p(r, t) are defined analogously. 

dynamic properties of the foundation are invariant in space and 

Green's function g (r, t; r - A, t - T) is independent of r and 
can write 

.+ 3 3  -b 

f 

for the impulse response of the foundation with a corresponding definition 

for hc(A, T) , the impulse response of the continuum. 

frequency response of the foundation may be defined as the Fourier trans- 

3 
The wavenumber- 

form of the impulse response 

This can also be interpreted as the traveling wave response of the founda- 

tion. 

or traTreling wave response of the continuum. 

3 
Similarly H (k, w )  is defined as the wavenumber-frequency response 

C 
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With these definitions the Fourier transforms of Eqs. (6) and 

(7) axe 

-* -* 
W(k, w) = Wo(k, w )  - H f ( Z ,  w )  P($, w )  

W($,, w )  = Hc(h, w) P(Z, w )  

which can be solved simultaneously to yield 

where 

is the traveling wave response at the interface of the composite system 

due to the same excitation which would cause a unit traveling wave on 

the foundation alone, The corresponding impulse response is the inverse 

Fourier transform 

where dB represents the element of area in the wavenumber plane and the 

integration extends over the entire plane. The inverse Fourier transfarm 

of (15) is 
00 

-8- 



which is a particular 

general relation (-1 
1 0  

functions becomes, in 

example of the general representation (8).  The 

between input and output space-time correlation 

the case of spatial homogeneity, 

The corresponding relation for the wavenumber-frequency spectra 

defined by ( 4 )  is obtained by Fourier transformation of (19) and (17) 

Finally if botk the excitationspectrum and the composite systen are 

isotropic --- (i .e. 

of k rather than k) then the response spectrum is also isotropic. 

if the wavenumber dependence of both @o and H are functions 
-b 

4. Membrane on viscoelastic Winkler foundation 
_I_- 

As a simple example to illustrate the application of the preceding 

analysis we consider the following case. 

the infinite halfspace 

relation. 

z = 0 the resulting surface displacement w(r, t) within the loaded area 

dA satisfies a Voight-type constitutive relation 

The foundation is taken to be 

z < 0 with an ideal Winkler-type constitutive 
-+ 

When a tensile load -p(r, t) dA is applied to the free surface 
-+ 

- p = b  - aw + cw 
at 

where b is a damping constant and c is a spring constant. It is assumed 

that the surface remains undeformed outside the loaded area dA. 

-9- 



We consider the case where initially the surface of the foundation 
+ 

has a random displacement wo(r, t) which is stationary in time and both 

homogeneous and isotropic in space. 

'Po(k, w )  for the initial displacement process is assumed to be known. 

We now pose the problem of predicting the wavenumber-frequency spectrum 

4(k, w )  of the interface process w(r, t) after a membrane has been 

stretched over the foundation. 

continuum in the preceding section is taken to have surface tension T 

per unit length and mass 

for the membrane alone is 

The wavenumber-frequency spectrum 

-+ 

The membrane which plays the role of the 

m per unit area so that the equation of motion 

+ 
where p(r, t) is the pressure loading acting on the bottom surface of 

the membrane. When the membrane is stretched over the foundation we 

assume that bonding occurs so that both the membrane and the foundation 

are constrained to share the same displacement w(r, t). As a result an 

interference loading p(r, t) is developed and the original displacement 

process wo(r, t) is modified. 

+ 

.+ 

+ 

To apply the analysis given previously we first calculate the 

traveling wave response of the foundation and of the membrane. 

a unit traveling wave excitation of the form expt i(0t - * 3;)) we 

obtain the foundation wavenumber-frequency response function (13 

from (21) 

Assuming 

directly 

-10- 



In the same way the membrane traveling wave response is obtained from (22) 

Mote that in this case both the foundation and the continuum are isotropic. 

The traveling wave response of the composite system, according to 

(15) is 

HC 

H(k9 = C + Hf 

- iwb + c 
- 2  Tk + c + iob - mu 2 

(25) 

The resulting interface wavenumber-frequency spectrum is then given by 

( 2 0 ) .  Ts carry this exaqlo samewhat farther we ass-me that $he original 

wavenumber-frequency spectrum cPo(k, w )  has the following special form 

0 

i.e., we assume that the original wavenumber-frequency spectrum is flat 

in wavenumber up to a cut-off wavenumber ko. 

the frequency spectrum of the original process is S (o). We shall deter- 

mine the corresponding frequency Spectra S( w )  of the resulting interface 

process in the composite system. 

Note that according to ( 5 )  

0 

Inserting (25) and (26) into (20) we obtain 

-11- 



so (W) 1 + 4 5  2 2 2  "/ao 

2 2  2 2 2  2 2  2 + 45 w /wo 
4% a) 7 

(1 - w /wo + Ek /ko) 
"kO 

where 
2 

ko 
, &  = - C b w2 = - , 2 5  = -  

C G o m  

The parameters w and 5 are the undamped natural  frequency and damping 

r a t i o  fo r  the mode of uniform vibration i n  which the  membrane bounces on 

the foundation without deforming. The dimensionless parameter E: 

0 

measures the  cut-off wavenumber of the exci ta t ion i n  terms of the  membrane 

surface tension and t h e  foundation s t i f fnes s .  

manner by imagining a sinusoidal s t a t i c  load w i t h  wavenumber ko applied 

separately 

It can be interpreted i n  a simpje 

t o  the foundation and t o  the membrane. In  both cases the 

s t a t i c  deformation i s  a l so  sinusoidal w i t h  wavenumber If the  load 

amplitudes a re  adjusted so as t o  make the  displacement amplitudes equal 

ko. 

then the  parameter 

t o  the  foundation load amplitude. 

e i s  j u s t  t h e  r a t i o  of the  membrane load amplitude 

The frequency response of t he  composite system i s  obtained by 

inser t ing (27) i n to  ( 5 )  

where the angles and o2 a re  given by 

-12- 



2 2  1 - w /wo 

2sw/wo tan O1 = 

It follows from (29) that S/So approaches (1 + E)-’ when w + 0 and that 

S/So approaches zero when w -f 00. 

with frequency is indicated in Fig. 1 for E = 1 and E = 5 when < = 0.1. 

The effect of decreasing the damping is to raise the levels in the pass- 

bands (in inverse proportion to Z;) without significantly changing the 

bandwidths. 

The nature of the variation of S/So 

5 .  - Other applications -- 
The analytical framework developed in Sec. 3 can be applied to 

For example it is a a wide range of fomdation and continuum models. 

simple matter to restrict the models to one spatial dimension and treat 

beams and strings on viscoelastic foundation. The two-dimensional model 

studied in Sec. 4 can be made more representative of structural practice 

by replacing the Winkler foundation by a continuous half-space with dis- 

tributed elastic and viscous 

by a plate. 

isotropic elastic half-space [l] the traveling wave response of the 

foundation (13) is 

parameters and by replacing the membrane 

In the case of a Bernoulli-Euler plate on a homogeneous 



1 I I 

I O  

n 

3 
v 

m0 
\ 
h 

3 

v, 
v 

5 

2 
Frequency response of membrane on Winkler foundation 
( 5  = 0.10) f o r  random exci ta t ion w i t h  @ ( k 9  w) = So(w)/nko 
for  k 4 ko and @(k ,  w )  = 0 f o r  ko < k. 

Figure 1 


